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Prandtl-Batchelor flow past - a flat plate at normal 
incidence in a channel - inviscid analysis 
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Department of Mathematics, Sung Hwa University, Cheonan, S. Korea 

(Received 23 March 1991 and in revised form 28 September 1992) 

A calculation is made of the steady profile adopted by a touching pair of vortex 
regions with equal and opposite vorticity in a bounded uniform stream. A family of 
possible solutions is deduced, depending upon the magnitude of a (non-dimen- 
sionalized) vorticity parameter. A similar calculation is carried out incorporating 
a flat plate normal to the stream at the upstream end of the vortex configuration. 
The requirement of tangential separation at the plate tip selects a unique value of the 
vorticity. It is found that, as the width of the plate is reduced in relation to that of 
the channel, the vortex profile asymptotically approaches one member of the above- 
mentioned family. The asymptotic form of the flow in the vicinity of the plate is 
deduced for this case and compared with a previous calculation. 

1. Introduction 
There is a good deal of current interest in incompressible planar flows involving 

regions of uniform vorticity. As Smith (1986) points out, this is for two reasons. The 
first is an interest in modelling approximately complex vortex flows, which have 
hitherto tended to be modelled by singular distributions (points, lines and sheets). 
The second is the demonstration by Batchelor (1956) that such flows can represent 
the limiting form of separated flows with closed streamlines as the Reynolds number 
Re+ co, i.e. they are so-called ‘Prandtl-Batchelor ’ fl0ws.t A good recent example in 
the first category is the work of O’Malley et al. (1991) on the flow past a backward- 
facing step. The present work, however, belongs to the second category. 

The review of Smith (1986) illustrates how slow was the progress in tracking down 
examples of Prandtl-Batchelor flow. A couple of early contenders were Childress’s 
(1966) slender-eddy model of unbounded flow over a backward-facing step and 
Sadovskii’s (1971) calculation of the steady profile adopted by a touching pair of 
vortex regions with equal and opposite vorticity in unbounded uniform flow. 
Recently a larger number have emerged. However, most of these inviscid flow 
configurations either fail, or at least have not yet been shown to pass, the test of 
demonstrating themselves to be limit solutions of the NavierStokes equations. 

For example, Childress’s (1966) inviscid model was criticized by Chernyshenko 
(1984) on the grounds that the incorporation of viscous effects led to a predicted 
unfavourable pressure gradient upstream of the step, which phenomenon is 
inconsistent with the original assumption of smooth separation from the step. 
Calculations by Saffman & Tanveer (1984) and Pullin (1984) do not give consideration 
to the question of whether the derived inviscid flow is a large-Re limit. Chernyshenko 

t The term is used by some authors in the above sense, but also in the broader sense of a steady 
inviscid flow involving regions of constant vorticity. We shall restrict ourselves to the narrower 
interpretation, it being more in keeping with the spirit of Batchelor’s (1956) work. 

3-2 
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FIGURE 1. schematic diagram of touching vortices in a ahannel. 

(1982, 1984) considers two-dimensional flow past a rectangular cavity in a plane 
surface and plane stagnation flow with a normal flat plate attached to the plane at  
the stagnation point. Values are calculated in each of these cases for the (constant) 
vorticity in the recirculating region, so as to make the flow consistent with the 
assumption of its being a large-Re limit, but the calculations are necessarily 
approximate. Furthermore, the author himself expresses reservations about the 
procedure adopted and admits the likelihood of secondary separations being 
predicted by more careful analysis. 

One exception in this regard is the calculation by Riley (1981) who considered the 
closed streamline flow in an elliptic region with a prescribed velocity distribution on 
the boundary. The condition of smooth matching with a constant-vorticity core flow 
enabled a unique value of the core vorticity to be found. 

A more interesting example, however, is that of Sadovskii’s (1971) vortex, it 
having been shown by Smith (1985) and Chernyshenko (1988) how such an inviscid 
flow configuration could in fact describe the viscous steady wake set up in an 
unbounded large-Re flow past a bluff obstacle. More recent work (Chernyshenko, 
19926) indicates how similar arguments apply in the case of bounded flow. It is of 
interest therefore to calculate how the inclusion of bounding surfaces and a flat plate 
influence the Sadovskii profile. 

In  $2 below we consider the effect of the bounding walls on the vortex profile. The 
calculation is extended in $ 3 with the inclusion of a flat plate on the centreline of the 
flow, with the vortices separating from its endpoints. Section 4 considers the limiting 
case that occurs when the plate becomes vanishingly small, examining in detail the 
flow in the vicinity of the plate. A closing section discusses whether these inviscid 
flows with regions of constant vorticity might be the large-Re limits of a 
Navier-Stokes flow. 

2. Touching vortices in a channel 
Consider the configuration illustrated in figure 1 .  Two vortex regions with equal 

vorticity of opposite sign touch along the centreline ofa  channel of half-width H .  The 
magnitude of their vorticity is w. We shall specify that there be no drop in Bernoulli 
constant across the vortex boundary ; the velocity is thus everywhere continuous. 
The vortex regions are assumed to possess reflectional symmetry about their 
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common boundary and about an axis a t  right angles to it. We take Cartesian 
coordinates in the direction of these two axes, with the origin of coordinates at the 
centre of symmetry. We seek, for given values of w and H ,  the vortex profiles that 
permit a steady flow solution. 

Our method of solution is essentially that used by Saffman & Tanveer (1982), 
which method originated with Deem & Zabusky (1978). We use the fact that, for a 
steady solution, the vortex boundary must be a streamline of the flow. I n  terms of 
a complex velocity potential 

(2.1) 

Im W(z)  = 0. (2.2) 

W(z)  = 4 ( X >  Y )  +i$(x, Y) 
with z = x+iy, the equation to be solved for the vortex boundary can be expressed 
as 

The required vortex potential is 

r , 
+ J [ ( z - < ) l n ( z - ~ ) + ( z + < ) l n ( z + ~ ) ] d z ’  , ( 2 . 3 ~ )  

( 2 . 3 b )  where x h  = z’ + BnHi, 

the overbar denotes a complex conjugate and the contour C is that part of the 
unknown vortex boundary residing in the first quadrant of the complex plane closed 
by the addition of appropriate sections of the real and imaginary axes (and 
negotiated in an anticlockwise direction). The influence of the bounding surfaces is 
represented by an infinite series of identical image vortices with centres a t  f 2nHi7 
n = 1,2, .  . . , which have the effect of rendering $ = 0 when Imz = f nH. 

We introduce polar coordinates ( r ,  8)  centred on 0, in terms of which the boundary 
can be specified as { z :  z = R(0)eis, 8 ~ [ 0 , $ ] }  where R(0)  is to be found. A finite 
Fourier series approximation for R(0) was used : 

C i 

n=o 

Equation (2.2) was then satisfied a t  collocation points 0, = jn/2N, yielding N 
equations for the N unknowns, Sn. 

The integrals in (2 .3a)  were evaluated numerically for In1 < M ,  for some suitable 
positive integer M .  The contributions of more distant vortex pairs were estimated by 
replacing each with a dipole of equivalent moment a t  its centre. The contribution to 
the stream function $ at position z = x + iy is of the form 

constant x Im [2nHi - z1-l. 
Combining contributions from +n and taking the asymptotic limit as MH + 03 (so 
that 21MH % 1x1) we find the total contribution to $ from distant vortices is 

with h the vortex dipole strength defined in the usual way as 
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FIGURE 2. Touching vortices in a channel for various values of A = IwH/U,,l: A = 50 (. . . . . . .), 
'4 = 20 (-.-), A = 10 (--), A = 9.3 (-). 

where the area integral is taken over the upper vortex region. Given o, U,, H and a 
suitable guess for the S, we can now make an approximate evaluation of the stream 
function +. 

We find it convenient at this point to introduce the non-dimensional parameter 

A := IoH/U,I. (2.6) 

The solutions of Sadovskii (1971) correspond to A = co . His solution was used as an 
initial guess in a calculation with A = 50 using N = 10 and M = 2. A solution was 
found using a Powell hybrid Newton method from the NAG library, which method 
employs a combination of Newton and chord iterations. The A = 50 solution was 
used as an initial guess for a solution with A = 20 ; this solution was in turn used as 
an initial guess for a solution with A = 10. Larger values of M up to 30 were found 
to be required as A was decreased in this way. 

Solutions for A = 10, 20 and 50 are depicted in figure 2, for fixed H and U,. As one 
would expect, the size of the vortices increases and their aspect ratio (width/length) 
decrease as A is decreased. Less obviously, however, the circulation of the vortices 
increases from 37u2,/1wl for A = 03 to 72q/101 for A = 10. An increase can be seen to 
be necessary by means of a simple argument. For, with a decreasing aspect ratio and 
fixed circulation, the dipole moment, and thus also the self-induced velocity, of a 
vortex pair will decrease: this would contradict our requirement that U, be fixed. 
Note that this simple argument ignores the increasing influence of the channel walls. 
However, since their effect is equivalent to that of an array of image vortex pairs, 
which act against the self-induction, our conclusion is once again that the vortex 
circulation must increase. 

Computational details 
Each of the above solutions was obtained with one or two Newton iterations, each 
followed by up to four chord iterations. After converged solutions were obtained, the 
value of M was progressively doubled until the vortex length L and width W varied 
by less than 1 % between successive solutions. For A = 50, increasing M above 2 
made less than a 0.2 % difference. Solutions were also calculated with larger values 
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Largest 
A M N WIH LIH residual 

50 2 10 0.078 0.26 < 10-8 
20 5 10 0.201 0.664 G 1 0 - 7  
20 10 10 0.203 0.660 G 10-7 
10 15 10 0.472 1.88 G 10-4 
10 30 10 0.473 1.90 G 10-4 

TABLE 1. Typical computational solutions. 

of N but the differences were never greater than 1 %. Some typical results are 
presented in table 1.  

For A = 50 and 20 the residuals were essentially roundoff. But for A = 10 they are 
larger. Solutions were also sought for smaller values of A ,  e.g. A = 9.5, but difficulty 
was experienced in obtaining converged solutions : residuals could not be reduced 
below lo-', which level was not considered acceptable. Increases in N ,  M and the 
accuracy of integration did little to improve the situation. 

The reason for this difficulty was not at  the time apparent, but it was felt that it 
stemmed from an inadequacy of the Fourier series in representing the vortex 
boundary. Confirmation of this view was subsequently given by the discovery of 
solutions, using alternative methods, for lower values of A .  Some such evidence is 
presented in 8 3 below. 

But more substantial evidence has since been provided by Chernyshenko (1992a) 
who has solved the identical problem by obtaining a full solution of Poisson's 
equation on a rectangular grid, using finite differences. In spite of this very different 
approach, his results for A 2 9.3 appear to corroborate ours to within 1 or 2% 
(although the values of A he considered do not correspond exactly with those 
considered here). In addition to his numerical results Chernyshenko (19924  proves 
analytically that A = 9 is a strict lower limit and that, as this value is approached, 
both the vortex circulation and the vortex aspect ratio L/W are unbounded. Thus, 
for 9 < A < 10, it is seen that no singularities exist in the analytically specified 
problem and that our difficulties must as a result have stemmed from the 
discretization, namely the Fourier series approximation. 

3. Bounded flow past a flat plate 
Since we are interested in the possible applicability of the vortex pair configuration 

as a model of the flow in the wake of a flat plate, we consider the effects of including 
a normal flat plate at  the upstream end of the vortices. The situation we shall 
consider is depicted in figure 3. The flow is taken, as in $ 2 ,  to be symmetric across 
the channel centreline, the vortex in figure 3 representing the upper half of the flow. 

This flow configuration is closely related to that studied by Pullin (1984). He 
considered unbounded flow past a normal flat plate, where the separation streamline 
reattaches to an identical normal flat plate positioned a fixed distance downstream 
of the first. He obtained a family of solutions for different values of the (fixed) drop 
in Bernoulli constant across the separation streamline, but considered only the case 
where the plates were positioned 15h apart. We of course assume a zero drop in 
Bernoulli constant ; also our interest is mainly in the case where the plate size is very 
small compared to the vortex dimensions. 
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FIGURE 3. Schematic diagram of the wake behind a flat plate in a channel. 

Consider then Cartesian coordinates with origin at  the centre of symmetry 0 of the 
plate and once again define a complex coordinate z = x + iy. Let the half-width of the 
plate be h so the plate tip is at  z = ih. In  order to obtain an expression for the stream 
function, we first carry out a Schwartz-Christoffel conformal mapping of the upper 
half-channel ( z  : Im ZE [0, HI)  onto the upper half-c-plane. This can be done by setting 

where 

Integrating, we obtain 

a = t a n {  ~ c ( H  4H - h) }.  
(3.la) 

(3.lb) 

(3 .1~)  

Under this transformation the point z = 0' is mapped to 5 = 0, z = 0- to 6 = - 1 and 
z = ih to c = - 1/(1 +a2).  The inverse transformation is given by 

[cosh/3(z+xo)]i+ [cosh/?(z-z,)]i 
[cosh/3(x+zo)]~- [cosh/3(z-zo)]~ 

[cosh/3(z+zo)]~- [cosh/3(x-zo)]~ 
[cosh P(x + zO)]i + [cosh /?(z - zO)$ 

} f Re[z l20 ,  115 = - 1 -a2 

} , Re[z] < 0, (3.2a) = - 1 - a 2  

where z0 = H - h ,  /3 = x / 2 H .  (3.2b, c )  

We calculate the stream function in the first instance in the c-plane, since this 
allows the effects of the bounding walls and of the plate easily to be included. The 
complex potential associated with a point vortex of strength r a t  position 5' is given 
by 

The stream function can be calculated by integrating such contributions over the 
region of non-zero vorticity. Unfortunately, the double integral thus obtained cannot 
be transformed into a contour integral like (2.3a), since the vorticity, expressed as 
a function of 5 rather than of z, is no longer constant. Since we must deal with an area 
integral, we choose to express the region of integration in z-coordinates. This has the 
advantage that the area of integration is more compact ; in addition, the Jacobian for 
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the transformation is the reciprocal of the vorticity weighting function in [-space, so 
our integral once again has constant vorticity. We find 

where [ ( z )  is as defined in (3 .2)  and the integration is over the region of non-zero 
vorticity in the upper half-z-plane. The equation to be solved is once again (2.2), but 
with two extra conditions at  the plate tip. First, we apply a Kutta condition, i.e. we 
require that the vortex boundary attach to the plate tip at z = ih. Secondly, we 
demand that the velocity be finite in the vicinity of the plate tip ; this will be so only 
if the vortex boundary attaches parallel to the plate, i.e. if 

Re -(z=ih) = O  r: 1 (3-4) 

(see Smith 1982). The problem to be solved is now completely specified. 
To obtain a solution, we again approximate the vortex boundary by a finite 

Fourier series. Take polar coordinates with origin at z = (C, 0), where 2C is an 
estimate of the vortex length. Then on the boundary z = R(8)eis, with R(0)  to be 
specified. The plate tip corresponds to 0 = 0, = n-tanp1 (h /C) .  Then 

R(8) = -Csec0, 0, d 8 d n. (3 .5a)  

We approximate R(8) by 

(3.5b) 

where the stretching function q(8) is defined according to 

tan0 = Ytanr(8) (3 .5c)  

and y is a constant which should be chosen roughly equal to double the aspect ratio 
of the vortex to ensure that the collocation points are fairly evenly spaced along the 
vortex boundary. (In practice a value of 8 was used, weighting the density of 
collocation points slightly towards the ends of the vortex, where the curvature is 
greater.) 

Now define collocation points O,, j = 1, N -  1 for 8 in the range (0,8,) by setting 

tan 0, = y tan (q(O, ) j /N) ,  j = 1,2, . . . , N -  I. (3.6) 
Satisfying (2.2) a t  the collocation points gives N -  1 equations. Matching ( 3 . 5 ~ ~ )  and 
(3.5b) at 8 = 8, gives another. Equation (3.4) is equivalent to an (N+ 1)th equation: 

dR h 
-(8=8,) = Csec8,tan8,=--(C2+h2)~. 
d0 C (3.7) 

These equations we must now solve for the N +  1 unknowns, namely S,, n = 0,  1, . . . , 
N -  1 and A = IwH/U,,I. We seek a solution, in the first instance for h/H = 0.1, taking 
as initial guess our solution from $2 with A = 10. A Newton method was once again 
employed. The integral in (3 .3)  was evaluated numerically using an adaptive 
integrating routine capable of dealing with the logarithmic singularities in the 
integrand which occur at the collocation points. With N = 18 an evaluation of (3.3) 
took about 1 minute of CPU time on a SUN SPARC station. A calculation based on 
2 evaluations of the Jacobian and 8 chord steps typically took 18 hours. 
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FIGURE 4. Constant-vorticity wake behind a flat plate in a channel: (a)  h l H  = 0.1, 
( b )  h/H = 0.01. 

Some difficulty was experienced in obtaining converged solutions, mainly on 
account of the extremely sensitive derivative condition (3 .7 )  applied at  the fence tip. 
Even when calculations converged, it was found that our discretized version of (2.2) 
did not have proper zeros : rather there remained residuals with a magnitude of up 
to 0.005U0H. It was concluded that this was on account of the inability of the 
Fourier series adequately to represent the infinite curvature of the separation 
streamline a t  the plate tip (see Smith 1982). 

Greater accuracy was sought by using larger values of N ;  the required CPU time 
increased as P. A calculation was carried out for the case h / H  = 0.01 with N = 80. 
Unfortunately, even with this large increase in the value of N ,  the magnitude of the 
residuals did not diminish. However, since it was observed that neither the vortex 
shape nor the predicted value of A were much affected by the increase in N ,  it  was 
concluded that these properties could be taken as having been reliably predicted, the 
only real uncertainty being in the precise nature of the flow in the near vicinity of 
the plate tip. This regime is considered in greater detail in $4 below. 

The value of A was, somewhat surprisingly, found to be 9.3 for all values of h/H 
up to 0.1. The vortex profiles obtained for h / H  = 0.1 w i t h 8  = 45 and for h / H  = 0.01 
with N = 80 are illustrated in figure 4. As can be seen, the latter profile is almost 
perfectly symmetric and was taken to be representative of the limit as h / H  + 0. The 
profile for h /H = 0.1 is little different, except of course near the plate. 

Comparing the limit solution for A = 9.3 with the A = 10 solution from $2, we 
find a decrease in aspect ratio from 0.275 to 0.24; the associated increase in r is from 
72g/1wl  to 99uZ,/lwl. 
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4. Asymptotic analysis near the plate 
We now consider in more detail the flow structure near the plate in the limit as 

h / H  -+ 0. This we shall do in three stages, by first considering the case h = 0, H = 00, 
then examining the effect of introducing a non-zero value of h and finally letting H 
be finite. It will be seen that, although the second of these cases (h  + 0, H = 00) does 
not yield a consistent asymptotic structure, consistency can none the less be restored 
in the third case when a finite value of H is employed. 

4.1. h = 0, H =  00 

We start our asymptotic analysis by considering the flow that results when the 
vortex size (as measured by the parameter IUo/wl) is constrained to be small compared 
to the channel width, but large compared to the plate size. In other words we take 
the asymptotic limit as oh/Uo + O  and A = IwH/Uol + 00. We argue that the flow 
structure (on the scale IUo/ol) must become independent of both h and H and must 
therefore tend towards the Sadovskii (1971) profile discussed above. To examine how 
such a vortex profile might be joined to a plate on the lengthscale O(h), we must 
consider the asymptotic structure of that flow in the near vicinity of the front 
stagnation point. 

The necessary calculation has in fact been carried out by Saffman & Tanveer 
(1982), whose analysis we shall now seek to extend. They take the front stagnation 
point of the vortex to be the origin of polar coordinates ( r ,  6) with flow from right to 
left. We shall follow their convention for the purposes of the present analysis, since 
it yields a certain elegance of notation (see figure 5 ) .  Their result for the stream 
function can be conveniently expressed as 

+O(z2/ln(z/yo))} as z+O,  (4.1a) 
where H( .  ) is the Heaviside step function. 

The constant yo was not determined in the analysis of Saffman & Tanveer (1982), 
but further computation by this author, employing 400 points (instead of Saffman 
& Tanveer's 20) in the specification of the vortex boundary, has shown that 

Yo = ~ . S l U 0 / 4  (4.1 b )  
to an accuracy of about 5 %. 

We start by noting that the result (4.1a) is deducible from the assumption of a 
formal asymptotic expansion of the form :t 

(4.2a) 

with (4 .2~)  

t There is a slight discrepancy between this expansion and that deduced by Saffman & Tanveer 
(1982) in the appearance of terms involving powers of l/ln ( -z/y,,) in (4.26). This form is necessary 
to satisfy the boundary condition on 9 = x ,  which condition is not in fact satisfied by the expansion 
of Saffman & Tanveer (1982). 
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The equation satisfied by (4.2) is 

(4.3) 

with boundary conditions that $ = 0 on 0 = 0, & + + ( r )  and n, and further that 
a$/a8 is continuous on 8 = in + 8(r ) .  

The form of (4.2) ensures that the boundary conditions a t  8 = 0 and 7c are 
automatically satisfied. The boundary conditions at 8 = + 6(r) specify three 
further relations between the a,, A,  and B,. Matching of terms proportional to 
lln(r/y,,)l-n for successive values of n allows the constants to be successively 
determined, in principle for any value of n. The procedure appears to be self- 
consistent and yields 

6 1 -1 - 47c, 

6 -1 

8, = &+&T~,  

A ,  = -An2, 
B -1 2 

l - 6 n  9 

A ,  = 0, 

2 - 

8 --I B =-Lnz 
4 - 327L 8 9  

consistent also with the results of Saffman & Tanveer (1982). 

4.2. h + 0, H = co 

We next examine how this asymptotic structure is influenced by the inclusion of a 
small flat plate of half-width h (< yo) inclined normally to the flow a t  the point of 
separation. We insist that the flow separate tangentially from the plate tip and that 
there be no Bernoulli drop across the separation streamline, as assumed in 92 above. 
Equation (4.3) again applies with the same boundary conditions. Of course now 
6(r)  = 0 for r < h. 

We seek a local solution in the vicinity of the plate under the assumption that the 
stream function tend asymptotically to  the Saffman & Tanveer (1982) solution, 
which we shall henceforth refer to as the ‘ h  = 0’ solution. Thus we suppose 

z 
2 In -- in? cos2 8 H(e-& - 6 ( r ) )  (4.4~~) 
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where lCrH is a harmonic function satisfying: 

$€I = o(Izl2) as lzl/h+ 0, (4.4b) 

and seek solutions for +" and S(r) ,  such that ( 4 . 4 ~ )  asymptotically satisfies (4.3) and 
the associated boundary conditions. The former is most readily found by a conformal 
mapping into the [*-plane, where 

c* = p ei# = ( 2 2 + h 2 ) + .  (4.5) 

The problem for ykrH can then be expressed as 

V2$, = 0, ( 4 . 6 ~ )  

+ H = O ,  $ = O ) X ,  P > h ,  (4.6b) 

$H = aw(h2-p2) ,  4 = O , T ,  p 6 h, ( 4 . 6 ~ )  

$H = o(p2) as p+ GO. (4 .6d)  

The solution is straightforward. We find 

C*+h 
(C*'-h2)1n-+B[* 

[*-h (4.7) 

where B is a constant. (A second complementary function proportional to { *2  has 
been ignored since it is not o(lzI2) and has effectively already been included in (4 .4a) . )  
From (4 .4a)  and (4.7) we conclude that 

+ B(z2 + h2)i - i.nr2 cos2 8 H(8-$ - S(r) )  

It remains to specify the value of the constant B and the required form of the 
function 6(r) .  Consideration of the behaviour of a+/a8 near z = ih shows that it 
becomes singular there, unless 

B = h, (4.9) 

which value we therefore take as appropriate in order to satisfy the condition of 
tangential separation at the plate tip. 

The form of S(r) is most readily obtained by consideration of the function S*(p) 
defined by 

S*(p) = arg (<*) -4.n (4.10) 

for any point [* on the separation streamline in the image plane. This is related to 
by 

sin 2S(r) 
h2/ r2  - cos 2S(r) 

tan2S*(p) = (4.11) 

Thus we can set <* = pei(r/z+s*), substitute into (4.8) and use the condition $ - 0 t o  
obtain 

p2 + h2 - 2hp sin S* 
- &p2 sin 26" In 

Yi 
p cos s* 

- (p2 cos 26" + h2) tanp1 +hpc0~6* - 0. (4.12) 
h-pcosS* 

We have neglected the particular integral proportional to .nr2cos8 since it is 
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O(p46*2/(p2 + h2))  as 6" + 0 and, as we shall see, gives a negligible contribution to $ 
to the order of accuracy of our calculation. We pose the following expansion for 6*(p) : 

(4.13a) 

and substitute into (4.12), gathering together powers of Iln [(p2+h2)~/yo]l to obtain, 
at  O( l ) ,  

(4.13b) 

( 4 . 1 3 ~ )  

Higher terms were not sought, since they would require matching with the neglected 
particular integral, which is discontinuous at $ = in + 6* and so would require in 
turn an additional (discontinuous) complementary function to render the procedure 
consistent.? We observe that 

f ,(plh) - p/3h - 0 as p / h  + 0, (4.14a) 

and that f,(plh) - t. as p/h+ 00, (4.14b) 

as is required for asymptotic matching with the outer solution. The condition on 
a@/ae is automatically satisfied to the assumed level of approximation, since I,? is 
continuous. The expansion (4.8) with (4.0)) (4.11) and (4.13) is thus seen to be 
consistent. 

We next go on to compare (4.8) in the limit as Izl/h+ 00 with the h = 0 solution 
(4.2). We have, from (4.8), 

z 
z2 ln- + 2hx - izr2 cos2 0 H(6-i. - S(r))  

as Izl/h+ co, IzI/yo+O, (4.15) 

where the function 6(r)  is now asymptotically equivalent to the corresponding 
function appearing in the h = 0 solution. Aside from the obvious discrepancy with 
the A ,  and B,, which we were able to ignore in our inner expansion, there is a further 
discrepancy in the appearance of a term 2hx in (4.15). We recall that this term's 
inclusion is necessary to ensure a velocity field which is non-singular in the vicinity 
of the plate tip. However, its appearance would at the same time appear to preclude 
asymptotic matching with the outer flow for any value of h. This does not 
immediately preclude the possibility of the plate having a non-perturbation effect on 
the outer flow. But since, for any given h, there is only one free parameter in the flow, 
namely wh/U,, and since, in general, only one value of the parameter will yield a 
singularity-free velocity field, there would appear to be insufficient degrees of 
freedom to support such a flow, except in the limit as wh/Uo + 0, which is, of course, 
the h = 0 case. We deduce that it is not possible to join a Sadovskii-type region of 
constant vorticity to a plate in unbounded flow, while maintaining the condition of 
tangential separation. 

t An attempt was in fact made to derive a uniformly valid asymptotic expansion which matched 
with the higher-order terms involving A ,  and B, in (4.2). However, no suitable extension of (4.8) 
could be found which did not lead to inconsistent predictions forf,(z). The question of the (possible) 
form of higher-order terms in (4.8) thus remains open. 
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4.3.  h f 0, H =I= co 
This need not be the case, however, for our bounded flow problem. For, as we found 
in $3 above, it appears always to be possible, when the plate is positioned in a channel 
of arbitrary half-width H ,  to satisfy the condition of tangential separation by 
suitably adjusting the value of the vorticity w .  The local solution is then identical in 
almost every respect to the one just discussed, the one exception being in the value 
of yo, which should be recalculated from an inviscid flow calculation on the 
lengthscale of the large vortex in the new geometry (see $ 3  above). 

Unfortunately, this was not possible in practice, since the vortex boundary in the 
calculation of $ 3  was not well enough resolved. However, comparing with the 
calculation for h = 0 ,  H = co in $4.1 above, we must expect that once again 

Yo = O(UO/W). 
If we further assume the same constant of proportionality as in (4 .1b)  and use the 
computed value A = 9.3 from $ 3 ,  we obtain the estimate yo = 0.91H. Thus, in the 
absence of further information, we follow the simple expedient of identifying yo and 
H ,  i.e. we estimate: 

Yo = H  (4.16) 

with consequent errors of O(1) in the value of ln(h/yo). We deduce the following 
expression for the velocity on the front and on the back of the plate: 

H 
(4.17) 

in obvious notation (where in principle the O(1) constant could be calculated). 
We can also now offer an interpretation of the 2hz term which appears in the 

stream function in the far field (see (4.15)). This represents a steepening of the 
trajectory of the separation streamline. Obviously this streamline must eventually 
flatten out and lie inside the original (h  = 0) streamline in order that the vortex’s self- 
induced velocity remain fixed and equal to U,. In other words, the vortex should 
become slightly narrower under the influence of the plate. However, as can be seen 
from figure 4, this effect would appear to be very slight even for values of h / H  as large 
as 0.1. 

In  conclusion, we have shown that the corner flow of a vortex separating from 
a plate of half-width h on the centreline of a channel of half-width H in the limit as 
h/H+O can be described in terms of an inner and an outer expansion. 

The outer expansion, applicable when h < IzI < yo, is given by (4 .2) ,  where the 
value of yo has not been calculated (but is O ( H ) ) ,  and the first few A,, B, and 6, are 
given. From (4.15), a term proportional to Zhz, representing the effect of the finite 
plate size, should strictly also be included inside the braces in the expressions (4 .2a,  b )  
for $. 

The inner expansion, applicable when IzI + yo, is given by (4.8ff). In fact this 
‘inner ’ expansion is strictly a uniform expansion, being applicable throughout the 
domain of the outer expansion. 

5. Concluding remarks 
We have shown how the steady profile adopted by a touching pair of vortex 

regions with equal and opposite vorticity is affected by the presence of bounding 
walls. Profiles were calculated for various values of the parameter A = IwH/UoI. It 
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was found that, as A decreased, the aspect ratio of the vortices decreased and the 
circulation increased. 

The calculation was extended to include a normal flat plate at the upstream end 
of the vortices. It was shown how the condition of tangential separation from the 
plate tip selected a unique value of A .  The value of A in the limit as h/H+O was 
found to be 9.3 ; negligible change in A was found for values of h /H up to 0.1. 

The flow near the plate was examined asymptotically for the limiting case h/H -+ 0. 
An expression was derived (equation (4.17)) for the fluid velocity on the surface of 
the plate, The influence of the plate on the separation streamline was examined 
(equation (4.15)) and was found to extend into the far field. 

We return finally to the question raised in t~ 1 above of whether the inviscid flows 
discussed are Prandtl-Batchelor limit flows. This requires examination of the effect 
of finite Re in the boundary layer surrounding the large vortices. Such considerations 
are beyond the scope of the present paper but have been examined elsewhere. Thus 
it has been found that the flows described in 92 above all represent inviscid limits, 
in the sense that they result if we let Re + co, but with Reh/H fixed (Chernyshenko 
1992b). However, current work by the author shows that the flows described in $3  
with a flat plate included appear not to be of the Prandtl-Batchelor type. 
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